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Abstract

Objective: Brain involvement is a serious complication of HIV infection. The

earliest changes in the brain, which represents an anatomic site for viral persis-

tence, are largely unknown. Methods: This investigation used quantitative Mag-

netic Resonance methodologies, including high resolution and diffusion tensor

(DTI) imaging, to evaluate the brain in 15 HIV and 20 seronegative subjects.

All HIV subjects were antibody nonreactive with assay-estimated infection dura-

tion of less than 100 days. Results: Brain volumetric analysis revealed reduced

parenchyma with enlargement of the third ventricle and brainstem. DTI quanti-

fied loss of white matter integrity in the corpus callosum and diffusion altera-

tions in caudate. Cognitive differences were indicated in psychomotor speed

and visual recall. There were no differences between antiretroviral-initiated and

na€ıve HIV subgroups. Interpretation: These findings, quantified within

100 days of infection, shed light on the earliest brain changes in HIV infection.

Onset of neural injury may date to initial viral invasion and the transient early

period of unchecked viremia and marked immunosuppression of the serocon-

version period.
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Introduction

The initial virus host interaction in HIV infection is charac-

terized by profound immune perturbances that are critical

for long-term outcome. The viral setpoint determined in

early infection, for example, predicts the time interval until

Acquired Immunodeficiency Syndrome (AIDS), which may

be diagnosed many years later, and the duration of sur-

vival.1 The initial virus host interaction involves rampant

viremia with widespread viral dissemination to tissues.

Viral reservoirs first established in this period constitute

long-lived sources of persistence and rebound viremia that

render viral eradication impossible, resulting in inexorable

immune failure and death.2 Because HIV may remain undi-

agnosed in the earliest stages, however, this critical period

is often lost to characterization. Early changes that occur in

the brain, which represents an anatomic site for viral persis-

tence in HIV infection, are largely unknown.

The Chicago Early HIV Infection cohort was established

to investigate the status of the brain within ~1 year of viral

transmission.3 Findings from this observational study do not

support the widely held assumption that the brain is spared

in early infection. Alterations were quantified in brain struc-

ture,3 in functional connectivity in the resting state4 and in

cognitive function in a cohort infected on average, 1 year.3

To gain further insight into the onset of earliest changes, this

investigation focused on seroconversion, which spans the

critical window in which the host first mounts an antibody

response. This very early period has not been considered in

prior analyses of the Chicago cohort. For this study, addi-

tional participants in Acute/Primary infection were enrolled

to examine the brain in the initial virus–host interaction. All
HIV subjects in this study were antibody nonreactive and

assay-estimated to be infected from 14 to less than 100 days

based on conservative estimates from a recency algorithm.5

Brain volumetric measurements were derived using high-res-

olution neuroanatomic imaging. For this study focused on

seroconversion, additional brain measurements were derived

using diffusion tensor imaging (DTI) to detect changes

occurring at microstructural levels and immune mediators

were examined to determine relationships with the earli-

est brain changes. A comprehensive neuropsychological

test battery was used to assess cognitive function. Brain

measurements were also examined for patterns of relation-

ship to viremia and to immune status in the seroconversion

period.

Subjects and Methods

Northwestern University Institutional Review Board

approved this investigation, which was conducted in

compliance with U.S. federal guidelines. Informed con-

sent was obtained from all subjects. The Chicago Early

HIV Infection study is an ongoing, observational investi-

gation. This study included 15 HIV and 20 seronegative

participants. A prior study of the larger Chicago cohort

(n = 43 HIV; mean duration, 1 year) included nine of

these subjects. For this study focused on seroconversion,

additional subjects in acute/primary infection were

enrolled (antibody nonreactivity; infected less than

100 days). All infected subjects reported sexual transmis-

sion as the method of infection. Seronegative subjects

were recruited from similar Chicago urban areas. Study

exclusion criteria for the Chicago cohort include chronic

neurological disorder, head injury, uncontrolled seizure

disorder, experimental drugs or vaccination within past

15 days, radiation or chemotherapy within prior month,

mental condition involving inability to understand,

chronic or active alcohol abuse, chronic or active drug

abuse, pregnancy, opportunistic infection, cancer, medical

condition (heart, liver or kidney) or MR contraindica-

tion. HIV and seronegative groups did not differ in age,

gender, racial composition, educational level or use of

alcohol or other drugs, with the exception of marijuana

use, which was higher in the HIV group (Table 1). Intra-

venous drug use was not reported in either group.

Blood samples were collected from HIV and seronegative

subjects. Serostatus was determined by enzyme-linked

immunosorbent assay and Western blot. Plasma viral load

(log10) ranged from undetectable to 10,000,000 copies/mL

(Table 1). Absolute CD4+ cell counts ranged from 247 to

1282/mm3. Seven HIV subjects were antiretroviral na€ıve

and eight had initiated antiretrovirals. Additional criteria

for HIV subjects in this study included antibody nonreac-

tivity and an early infection assay of less than 10 (Blood

Systems, San Francisco, CA). This assay uses a conservative

“nonreactive” criteria of 10 to reduce the false recent rate.5

An assay value of 10 corresponds to an estimated infection

duration of 105 days (95% CI: 73.5–138.2). The mean assay

value in this sample was considerably lower (3.86 � 2.7)

with values ranging from 0.13 to 7.65. Therefore, all sub-

jects in this sample were conservatively estimated to be

infected less than 100 days. Based on Fiebig staging, these

subjects were estimated to be in stages III to V.6

Cytokine/chemokine quantification

Multiplex analyses were conducted at Core Immunology

Laboratory at Blood Systems Research Institute, San Fran-

cisco, CA. Serum samples were assayed using the high-

sensitivity MilliPlex kit (Millipore, Billerica, MA, USA)

for IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10,
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IL-12p70, IL-13, IFN-c, GM-CSF and TNF-a; and the

standard-sensitivity Milliplex Map kit (Millipore) for epi-

dermal growth factor (EGF), Eotaxin, fibroblast growth

factor (FGF)-2, FLT-3, Fractalkine, IFN-a IL-1a, IL-1Ra,
IL-3, IL-9, IL-12(p40), IL-15, IL-17, IP-10, monocyte che-

motactic protein (MCP)-1, MCP-3, macrophage-derived

chemokine (MDC), macrophage inflammatory protein

(MIP)-1a, MIP-1b, sIL-2Ra, TNFb, granulocyte colony-

stimulating factor (G-CSF), growth-related oncogene

(GRO), TGF-a and vascular endothelial growth factor

(VEGF). All measured in pg/mL. In brief, serum was

incubated overnight with antibody-coupled beads fol-

lowed by incubation with biotinylated detection antibody,

and finally, incubation with streptavidin-PE. Each sample

was assayed in duplicate and cytokine standards, and con-

trols, supplied by the manufacturer, were run on each

plate. The lower and upper limits of analyte detection

were determined by the assay manufacturer. In addition,

manufacturer controls and in-house controls consisting of

supernatants of PBMCs stimulated with mitogen in cul-

ture were also run. Multi-analyte profiling was performed

using a Luminex-100 system and data were analyzed

using BioPlex 6.1 software (BioPlex, Hercules, CA, USA).

Luminex Standard Curve: A 5-PL curve fit was used to

graph the 7-point standard curve. The curve for every

analyte was checked for the fit of the standard data

points. For errors or more than a 30% CV coefficient of

variation for any standard, those points were dropped.

For Luminex measurements that fell below the lowest

standard and were determined to be out of range by the

Bioplex Manager software, a value of one-half the lowest

standard value was used for the statistical analysis.

MR imaging

Imaging data were acquired on a single MR scanner, a 3 T

MAGNETOM Tim Trio (Siemens, Erlangen, Germany)

with maximum gradient slew rate, 200 mT/m per second,

maximum gradient strength, 40 mT/m, using a 12 channel

receive-only head coil. Sagittal whole brain Magnetization

Prepared Rapid Acquisition Gradient Echo images were

acquired (parameters: TR/TI/TE: 2300/900/2.91 msec; flip

angle: 9°; field of view: 256 9 256 mm; slice thickness:

1 mm; resolution: 1 9 1 mm; slices: 176). For DTI, a 2D

double refocused spin echo sequence with echo planar

readout was used for acquisition (parameters: axial, TR/TE:

9700/90 msec, flip angle: 90°, field of view: 256 9 256 mm,

In-plane resolution: 2 9 2 mm, slice thickness: 2 mm,

slices: 72, Bandwidth: 1326 Hz/Px, averages: 1, acceleration

factor: 2, directions: 64, b = [0; 1000] sec/mm2).

Image analysis

All image analysis was conducted blinded to subject status

(HIV or control). Image quality control was performed

visually by a trained operator to ensure that artifacts were

not present in any of the MR modalities. SIENAX

(Oxford University, Oxford, England) was used to calcu-

late volumetric measurements for brain parenchyma, ven-

tricular, and tissues classes (gray matter, cortical gray

matter, white matter, and cerebrospinal fluid) normalized

for differences in head size.7 SIENAX first extracts a brain

and skull image from the subject’s structural MPRAGE

input image. The skull image is used to determine regis-

tration scaling from subject space to standard space

(MNI125). This scaling is then utilized in the affine-regis-

tration of the brain image to standard space. This process

defines the volumetric scaling factor used to normalize

the brain volume. To avoid introducing errors from blur-

ring associated with registration, tissue segmentation is

performed on the original (nonregistered) MPRAGE

images and volumes are then scaled by the scaling factor

to derive the normalized measurements. Freesurfer,8 was

Table 1. Demographic and clinical characteristics.

HIV

(n = 15)

Control

(n = 20) P

Demographic characteristics

Age (mean years � SD) 34.9 � 11.2 31.7 � 8.9 0.36

Gender (% male) 93% 80% 0.25

Race (% White) 47% 75% 0.09

Education (% college) 71% 90% 0.21

Substance use (past month)

Alcohol (5 or

more drinks)

3 4 0.99

Marijuana 7 2 0.01

Cocaine 0 0 –

Amphetamines 0 0 –

Glue or solvent sniffing 0 0 –

Heroin 0 0 –

Other 0 0 –

Clinical characteristics

CD4 cell count (cells/lL)

Mean � SD 580 � 332.7

Range 247–1282

Plasma HIV RNA

copies/mL (log10)

Mean � SD 3.50 � 2.0

ART Na€ıve (n = 7) 3.61 � 2.2

Initiated on ART (n = 8) 3.40 � 1.8

Regimen

Atripla (efavirenz,

emtricitabine, tenofovir)

5

Ritonavir, atazanavir,

emtricitabine/tenofovir

2

Raltegravir,

emtricitabine/tenofovir

1

ART, antiretroviral therapy.
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used to derive measurements of individual brain regions.

To minimize operator variability in manual editing, a

semi-automated approach was used. Case by case visual

inspection was used to assess image quality across scans;

skull stripping and segmentation results met quality assur-

ance standards for both cortical and subcortical segmenta-

tion. Freesurfer measurements for individual brain

regions were divided by the intracranial cavity volume to

adjust for differences in head size. DTI parameters,

including fractional anisotropy (FA), which is sensitive to

white matter integrity, and mean diffusivity (MD), which

quantifies water molecular diffusion at levels approximat-

ing cellular dimensions, were determined for aggregate

3D volumes of interest. Parametric FA and MD maps

were derived using custom software on a Linux worksta-

tion. Eddy-current-induced distortions were corrected in

the SE-EPI-DTI images by registering all diffusion-

weighted images to the B0 image for each slice. DTI para-

metric maps were coregistered to the anatomical T1 struc-

tural image using FLIRT (FMRIB’s Linear Registration

Tool). For DTI, the b0 image was used to calculate a

transformation matrix between DTI and T1, which was

then applied back to the DTI images to align them and

segmentation was performed on the structural scan using

Freesurfer to mask 3D volumes of interest. FA and MD

were then calculated using standard equations9 for all

voxels within 3D volumes of interest. Volumes of interest

included regions that have been identified as vulnerable

to injury in studies of more advanced infection HIV

infection, including cerebral cortex, cerebral white matter,

corpus callosum (CC), caudate, putamen, thalamus, and

hippocampus.10–19

Cognitive assessment

Subjects were evaluated using a neuropsychological test

battery that has been used in longitudinal studies of HIV

neurological outcome.20

Statistical analysis

The primary analyses considered continuous variables

(volumetric, DTI [FA and MD] and cognitive measures).

Distributional assumptions were evaluated using the Shap-

iro–Wilk test. Group comparisons were accomplished with

independent t-tests or Wilcoxon signed rank test. Chi-

square or Fisher’s exact test were used to consider categor-

ical variables (e.g. demographic). For a priori analyses, a

significance level of 0.05 was used. Secondary analyses

involving HIV subgroups were accomplished with analysis

of variance or Kruskal–Wallis, followed by Tukey-adjusted

pairwise comparison. Spearman correlation coefficients

were used to examine relationships between clinical mea-

sures and imaging measurements. Binary logistic regres-

sion was used for adjusted analyses. The quantitative early

infection assay was used as a measure of length of infec-

tion. Analyses were executed with SAS (Cary, NC).

Results

Imaging measurements

Table 2 presents significant group differences for the

imaging measurements. Volumetric analysis quantified

reduced brain parenchyma percent (t(33) = �2.21;

P = 0.04), expansion of third ventricle (t(32) = 2.14;

P = 0.04), and brainstem enlargement (t(33) = 2.79;

P = 0.009) in the HIV seroconversion group. Differences

for cortical (P = 0.067) and total (P = 0.08) gray matter

were nearly significant. Anisotropy measurements (DTI

FA) for aggregate 3D CC were reduced in the HIV group

(t(33) = �2.54; P = 0.016) with further analysis of indi-

vidual CC segments, indicating the most prominent dif-

ferences in anterior (t(33) = �2.95; P = 0.006) and mid-

posterior regions (t(33) = �1.96; P = 0.065) (Fig. 1).

Diffusivity (DTI MD) for aggregate caudate volume was

also significantly increased (t(33) = 2.22; P = 0.034) com-

pared to controls. There were no differences in the brain

imaging measurements between antiretroviral therapy

(ART) and na€ıve HIV subgroups.

Cognitive status

As shown in Table 3, the HIV group had weaker perfor-

mance on Digit Symbol (t(31) = �4.32; P = 0.001) and

Table 2. Quantitative brain differences identified in HIV seroconver-

sion.

HIV (n = 15) Control (n = 20)

P ESMean � SD Mean � SD

Volumetric measures1

Brain

parenchymal

percent

0.84 � 0.03 0.86 � 0.01 0.04 0.8

Third ventricle 0.0006 � 0.0001 0.0001 � 0.00003 0.04 0.7

Brainstem 0.014 � 0.001 0.013 � 0.001 0.009 1.0

DTI measures

FA CC 0.67 � 0.04 0.69 � 0.02 0.016 0.9

FA CC

anterior

0.65 � 0.08 0.70 � 0.06 0.006 1.0

FA CC

mid-posterior

0.59 � 0.05 0.64 � 0.04 0.065 0.7

MD caudate 0.0009 � 0.0001 0.0008 � 0.00007 0.034 0.8

ES, effect size. Mean difference divided by common standard devia-

tion. DTI, diffusion tensor imaging; FA, fractional anisotropy; CC, cor-

pus callosum; MD, mean diffusivity.
1Normalized for cranial size.
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Rey Complex Figure Recall (t(26) = �2.02; P = 0.05).

There were no differences in cognitive measures between

ART and na€ıve HIV subgroups.

HIV disease status

Table 4 presents relationships between significant imaging

findings and clinical measures (CD4+ and CD8+ cell

counts, plasma HIV RNA). CD4+ depletion, measured

concurrently with brain imaging in the seroconversion

period, was significantly correlated with FA in CC

(q = 0.68; P = 0.007) and the mid-posterior CC segment

(q = 0.63; P = 0.02) and with MD (diffusivity) in caudate

(q = 0.55; P = 0.4).

Cytokines/chemokines

Table S1 presents plasma levels of immune mediators

in HIV and seronegative controls and Mann–Whitney

tests of group differences. Table 5 presents Spearman

correlations between the significant imaging measures

and plasma levels of immune mediators:

for brain parenchyma: IL-1b (�0.466; P = 0.005), sIL-

2Ra (�0.446 P = 0.012), IL-3 (�0.622 P = 0.002), IL-

6 (�0.483; P = 0.003), TNFa (�0.410; P = 0.015), IL-

1Ra (�0.436; P = 0.009), IL-10 (�0.371; P = 0.028),

GRO (�0.57; P = 0.017) (P = 0.051–0.058: IL-7, IL-8,
IFNc, EGF and Flt-3).

for the third ventricle: IL-1a (0.44; P = 0.009), IL-6

(0.359; P = 0.034), IL-15 (0.396; P = 0.018), TNFb
(0.575; P < 0.001), GM-CSF (0.463; P = 0.005), MCP-

1 (0.384; P = 0.023), eotaxin (0.481; P = 0.003).

(P = 0.051: IL-1b and IL-13)

for brainstem: IL-1b (0.357; P = 0.036), IL-4 (0.477;

P = 0.004), IL-10 (0.386; P = 0.022).

and caudate MD: IL-8 (0.391; P = 0.020), IL-5 (0.332;

P = 0.051), IL-10 (0.548; P = 0.001) (P = 0.51: MDC

and VEGF).

CC FA

No significant correlations between immune mediators

and CC FA were identified.

Adjusted analyses

A binary logistic model was used to consider subject char-

acteristics, including age, education, HIV, race, and

gender, as predictors of brain alterations, determined by

k-means classification. Based on forward selection, age

Figure 1. Freesurfer segmentation shown for individual segments of

the corpus callosum in a participant infected only a few weeks.

Volumetric and diffusion tensor imaging (DTI) measurements can be

quantified for 3D volumes of interest. Loss of white matter integrity

was detected in the corpus callosum in HIV seroconversion.

Table 3. Neuropsychological measures.

HIV Control

P ESMean � SD Mean � SD

Digit symbol 54.08 � 10.47 68.15 � 8.18 0.001 �1.54

Rey complex

figure recall

23.18 � 6.98 27.65 � 4.73 0.053 �0.78

Rey complex

figure copy

33.27 � 2.80 33.88 � 3.64 0.641 �0.18

Rey auditory

delayed

recall

9.31 � 3.25 11.17 � 2.64 0.090 �0.64

Rey recall

after

interference

9.38 � 2.931 10.6 � 2.46 0.208 �0.46

Rey auditory

verbal

learning

12.08 � 2.50 13.0 � 1.45 0.244 �0.48

Odd man out 9.69 � 0.63 9.95 � 0.22 0.178 �0.61

Grooved

pegboard

(dominant)

64.31 � 8.19 60.53 � 9.62 0.256 0.42

Grooved

pegboard

(non-

dominant)

68.77 � 8.95 66.32 � 9.36 0.464 0.27

Letter-number

sequencing

12.31 � 3.07 13.84 � 3.34 0.197 �0.47

Verbal fluency 38.23 � 10.54 42.25 � 10.33 0.287 �0.39

Trails A 26.0 � 8.78 26.55 � 9.09 0.865 �0.06

Trails B 65.62 � 25.47 59.70 � 17.68 0.436 0.28

Timed gait 8.58 � 1.311 8.8 � 1.32 0.656 �0.17

CALCAP

choice

421.82 � 56.83 427.6 � 53.60 0.780 �0.11

CALCAP

sequential

552.64 � 90.438 550.85 � 93.36 0.959 0.02

ES, effect size. Mean difference divided by common standard devia-

tion. CALCAP, California Computerized Assessment Package.
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was the only significant variable. This approach was also

used to consider clinical (CD4+ cell count, viral load,

CD8, length of infection, antiretroviral status) and subject

characteristics separately in the HIV group (n = 15).

Variables associated with brain alterations in the HIV

group included age and viral load.

Discussion

This imaging investigation quantified brain alterations

within the first 100 days of HIV infection. Volumetric

analysis revealed reduced total parenchyma, third ventricle

expansion, and enlargement of brainstem (Table 2). DTI

indicated altered white matter integrity in CC and micro-

structural alterations in caudate. These findings, detected

prior to an antibody response, may be among the earliest

brain changes in HIV infection. An autopsy conducted

15 days following an iatrogenic infection found mononu-

clear cells in meninges and throughout the cerebral cortex,

basal ganglia, and cerebellum,21 mirroring the in vivo

findings of this imaging study. Other studies have detected

the virus in cerebrospinal fluid (CSF) within 8 days of

HIV transmission22 and during primary infection.23

Neuroinflammation has been detected by Magnetic Reso-

nance Spectroscopy in Acute HIV.24 CSF concentrations of

neurofilament light chain, a marker of axonal injury, are

elevated in primary infection and correlate with imaging

measures of neuronal injury examined in white matter

(anterior cingulate and frontal) and cortical gray matter.25

Studies of early HIV infection, defined variously as soon

after seroconversion or within the first approximate year,

have found neuronal injury in frontal cortex,26 microglial

activation in basal ganglia,26 reduced subcortical blood

flow,27 altered functional connectivity4 and structural

changes in gray matter with third ventricular expansion.3

The findings for seroconversion are consistent with atro-

phy, ventricular expansion, and injury in CC and basal

ganglia that have been found with advanced infec-

tion.12,16,28 Taken together, this evidence supports early

onset of neural injury in HIV infection.

The pattern of findings may reflect vulnerability of these

regions to initial brain viral invasion and neuroinflamma-

tion. Initial symptoms of HIV infection often include

headache and symptoms of meningitis. The meninges can

Table 5. Immune mediators and significant brain imaging measures.

BPV

Third

ventricle Brainstem FA CC

MD

caudate

Pro-inflammatory/T-cell

IL-1a �0.27 0.44** �0.10 0.12 0.08

IL-1b �0.47** 0.33 0.36* 0.16 0.24

IL-2 �0.31 0.11 0.26 0.20 0.17

sIL-2Ra �0.45* 0.12 0.05 �0.23 �0.13

IL-3 �0.62** 0.34 �0.24 0.14 �0.12

IL-6 �0.48** 0.36* �0.03 �0.13 0.30

IL-7 �0.33 �0.03 0.21 0.21 0.14

IL-8 �0.33 0.01 0.31 �0.22 0.39*

IL-9 �0.11 0.09 �0.08 �0.12 �0.10

IL-12(p40) �0.15 0.28 �0.06 0.01 �0.15

IL-12(p70) �0.13 0.14 0.06 0.24 0.25

IL-15 �0.09 0.40* �0.11 �0.04 0.00

IL-17 �0.29 �0.16 0.07 �0.14 0.31

TNFa �0.41* �0.12 0.28 �0.07 0.27

TNFb �0.17 0.58** �0.10 �0.22 0.04

GM-CSF �0.27 0.46** 0.13 0.05 0.23

Anti-inflammatory/Th2

IL-1Ra �0.44** 0.19 �0.23 �0.22 0.08

IL-4 �0.27 0.03 0.48** 0.11 0.13

IL-5 �0.21 0.07 0.16 �0.07 0.33*

IL-10 �0.37* �0.02 0.39* �0.10 0.55**

IL-13 �0.31 0.33 0.03 0.11 0.20

Chemoattractants

IP-10 �0.25 0.03 0.21 0.06 0.11

MCP-1 �0.27 0.38* �0.03 �0.06 0.07

MCP-3 �0.10 0.16 0.12 0.11 �0.08

MDC �0.16 0.00 0.18 �0.01 0.35*

MIP-1a �0.07 �0.07 �0.22 �0.03 0.13

MIP-1b �0.18 �0.09 �0.16 �0.02 0.20

Eotaxin �0.20 0.48** 0.09 0.08 0.00

Fractalkine �0.09 �0.12 0.11 �0.18 0.16

IFNa �0.31 0.02 �0.03 �0.03 �0.07

IFNc �0.32 0.09 0.30 0.17 0.22

Growth factors

VEGF �0.12 �0.22 0.18 �0.15 0.33*

EGF �0.32 0.14 �0.12 �0.01 0.18

FGF-2 �0.30 �0.01 0.09 �0.05 0.15

Flt-3 �0.48 0.21 �0.26 �0.03 0.32

GCSF �0.25 0.14 0.06 �0.33 0.26

GRO �0.57* 0.24 �0.42 �0.12 �0.32

TGFa �0.18 �0.03 �0.37 0.16 0.27

BPV, brain parenchymal volume; FA, fractional anisotropy; CC, corpus

callosum; MD, mean diffusivity.

Spearman correlation coefficients. Markers measured in pg/mL.

*P < 0.05; **P < 0.01.

Table 4. Brain alterations and HIV clinical status in seroconversion.

CD4+

(cells/lL)

CD8+

(cells/lL)

Plasma HIV RNA

(copies/mL)

Volumetric measures

Brain parenchyma 0.12 0.31 0.05

Brainstem �0.28 �0.07 0.12

Third ventricle 0.24 �0.02 �0.00

DTI measures

FA CC 0.68** 0.43 �0.09

FA CC anterior �0.21 �0.30 �0.31

FA CC mid-posterior 0.63* 0.39 �0.18

MD caudate 0.55* 0.40 0.12

CD, cluster of differentiation; DTI, diffusion tensor imaging; FA,

fractional anisotropy; CC, corpus callosum; MD, mean diffusivity.

Spearman correlation coefficients. *P < 0.05; **P < 0.01.
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harbor virus and may play a role in viral transport.29 Gray

matter abnormalities and third ventricular enlargement

have been seen in vivo in Acute HIV meningoencephali-

tis.30 Viral invasion of the brain may occur as cell-free

virus or via infected monocytes that traffic to the brain in

immune surveillance and response.31–33 An intact blood–
brain barrier generally restricts viruses, however, this per-

iod is characterized by rampant viral expansion, massive

CD4+ destruction, and a cytokine storm.34 Viral proteins,

cytokines, chemokines, and other factors may alter the

restrictive properties.35 Moreover, blood–brain barrier is

intrinsically more permeable or lacking in circumventricu-

lar organs, highly vascularized areas near ventricular walls,

and in choroid plexus, strands of vascular membrane

within ventricles. In the lateral ventricle, the choroid

plexus is prominent in the atrium, bordered by CC and

caudate. The third ventricle, situated below CC and above

the brainstem, is partly formed by circumventricular

organs (e.g. the subfornical organ) and the roof compris-

ing the choroid plexus. Expansion in this ventricle may

reflect changes in the surrounding regions and/or altera-

tions in CSF production and outflow, which may be

markedly modified in HIV infection.36 Choroid plexus is

critical in CSF production and functions as a protective

filter, removing neurotoxic factors from CSF (blood-CSF

barrier) to maintain the delicate extracellular environment

of neurons.37 Importantly, choroid plexi may become

calcified with age, often in glomus choroideum, which is

bordered by CC and caudate.37 In adjusted analyses, both

older age and the plasma HIV RNA level were associated

with brain alterations in seroconversion.

Virus or infected/activated monocytes in meninges,

subarachnoid space, and parenchyma activate the Central

Nervous System (CNS) immune repertoire. Microglia is

critical in orchestrating this response through cytokines,

chemokines, and other mediators. While neurons lack the

CD4+ receptor and not directly infected, they can be

injured or destroyed by exposure to viral proteins or

inflammatory factors that induce cellular death pathways

or impair neuroprotective mechanisms.38 Prolonged or

unrelenting immune activation may lead to considerable

injury. The viral protein, tat, for example, increases intra-

cellular calcium, potentiates excitotoxicity, and induces

apoptosis.39,40 Transient exposure may cause progressive

neuropathological changes for days.41

Viremia in Acute HIV is associated with rapid, transient

elevations in IFN-a and IL-15, increases in IP-10, rapid

and sustained increases in TNF-a and MCP-1, slow eleva-

tions in IL-6, IL-8, IL-18, and IFN-c and late-peaking

increases in IL-10.34 The relationship to changes occurring

in the brain is largely unknown. Immune responses

induced in the initial virus host interaction may have a

potentially dual role – containing viral replication or

fueling immune activation and viral spread.34,42 With

respect to brain involvement, findings from this study

favor the latter interpretation. Significant relationships

(P < 0.01) with circulating immune mediators (Table 5)

were identified for brain parenchymal volume (IL-1b, sIL-
2Ra, IL-3, IL-6, TNFa, IL-1Ra, IL-10, and GRO), third

ventricle (IL-1a, TNFb, GM-CSF, eotaxin), brainstem

(IL-4), and caudate diffusivity (IL-10). Additional rela-

tionships (P < 0.05) are presented in Table 5. MCP-1,

which has been implicated in HIV-associated brain

injury,20 correlated only with third ventricular expansion

(P = 0.02) in the seroconversion period.

In contrast to other brain alterations, no significant

relationships with circulating markers were identified for

CC. Loss of white matter integrity in this region corre-

lated specifically with CD4+ depletion in seroconversion.

Vulnerability of CC in HIV infection, which was largely

unrecognized for many years, has since been demon-

strated by Positron Emission Tomography, computational

neuroanatomy, diffusion tensor, and magnetization trans-

fer imaging16–18,43 with marked damage confirmed in

postmortem analysis.19 A relationship with concurrent

CD4+ has been found in advanced infection.10,16 The

basis of the observed relationship with immune status is

unclear. The CC is the largest white matter structure in

the brain, with projections to all regions and broad

involvement in cognitive function. Early alterations in CC

may be relevant to differences in psychomotor speed and

visual memory that were identified in seroconversion and

to longer term deterioration in cognitive function. Both

nadir CD4+ (i.e. the lowest value in the clinical history)44

and psychomotor slowing45 have been identified as

predictors of HIV neurocognitive outcome. It is impor-

tant to recognize that CD4+ cell loss in the seroconver-

sion period, as well as the nadir CD4+, if in early

infection, may represent indirect measures of the intensity

of viremia in the initial viral host interaction. Plasma

HIV RNA peaks within ~21 days of initial exposure,

reaching staggering, albeit transient levels that may exceed

those of advanced infection. This rampant viral expansion

is accompanied by massive CD4+ destruction. It is plau-

sible that higher viremia levels in acute HIV may be asso-

ciated with increased brain viral exposure and

neuroinflammation, whereas it is difficult to capture the

peak level as viremia declines dramatically with host

defense and with treatment, CD4+ recovery requires

longer and may be attenuated even in those who achieve

viral suppression.46

Brain status measurements did not differ in ART-initi-

ated (n = 8) and na€ıve (n = 7) subjects, however, the

small sample may have precluded detecting differences.

In addition, treatment averaged only 38 days. Viral sup-

pression may require up to 3–6 months after initiation

ª 2014 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 7

A. B. Ragin et al. Brain in First 100 Days of HIV



of ART. Larger, longitudinal studies examining effects of

treatment are imperative. Early ART may be neuropro-

tective. Some evidence suggests that primary infection

represents a critical window of opportunity for optimal

immune recovery.47,48 Curbing early viremia and preserv-

ing immune function may benefit a long-term neurologi-

cal outcome. Alternatively, there may be potential

neurotoxic ART effects and early initiation would trans-

late into greater cumulative exposure. Five of the ART

subjects were on efavirenz (through the multi-drug, Atri-

pla). A metabolite of efavirenz is a potent neurotoxin in

vitro, evoking calcium flux in neurons and inducing

considerable damage to dendritic spines.49

The small sample may have precluded identification of

more subtle brain alterations in HIV seroconversion and

of additional host factors associated with increased risk.

It is unlikely that the brain alterations observed in this

sample can be accounted for by past history of heavy

drug use or co-infection. Chronic/active drug use was an

exclusion criterion and this sample was not characterized

by history of heavy drug use. None of the subjects were

coinfected with hepatitis and opportunistic infection was

also an exclusion. Active drug use and coinfection, how-

ever, are relatively common in HIV infection. History of

methamphetamine, cocaine, alcohol, and other sub-

stances, as well as coinfection (e.g. hepatitis, TB, sexually

transmitted diseases) and other factors may increase risk

of early brain involvement in HIV infection and merit

further study in larger samples.

These findings paint a picture of the brain in HIV

seroconversion. It is important to recognize that during

this period the brain may be subject to factors that are

unique to the initial virus host interaction. The serocon-

version period is time-limited and differs importantly

from the remainder of the infection. An adaptive

immune response is not yet fully established in this time

frame. While transient, uncontrolled viremia, and immu-

nosuppression during this very early period may have

lasting effects on the brain, further studies will be neces-

sary to replicate and extend these results to determine

whether the brain alterations detected in seroconversion

resolve with host defense or herald an indolent course of

cumulative neural injury and cognitive decline.
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